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ABSTRACT

Motivation: Copy number variations (CNVs) are a major source of

genomic variability and are especially significant in cancer. Until re-

cently microarray technologies have been used to characterize CNVs

in genomes. However, advances in next-generation sequencing tech-

nology offer significant opportunities to deduce copy number directly

from genome sequencing data. Unfortunately cancer genomes differ

from normal genomes in several aspects that make them far less

amenable to copy number detection. For example, cancer genomes

are often aneuploid and an admixture of diploid/non-tumor cell frac-

tions. Also patient-derived xenograft models can be laden with mouse

contamination that strongly affects accurate assignment of copy

number. Hence, there is a need to develop analytical tools that can

take into account cancer-specific parameters for detecting CNVs

directly from genome sequencing data.

Results: We have developed WaveCNV, a software package to iden-

tify copy number alterations by detecting breakpoints of CNVs using

translation-invariant discrete wavelet transforms and assign digitized

copy numbers to each event using next-generation sequencing data.

We also assign alleles specifying the chromosomal ratio following

duplication/loss. We verified copy number calls using both microarray

(correlation coefficient 0.97) and quantitative polymerase chain

reaction (correlation coefficient 0.94) and found them to be highly

concordant. We demonstrate its utility in pancreatic primary and

xenograft sequencing data.

Availability and implementation: Source code and executables

are available at https://github.com/WaveCNV. The segmentation

algorithm is implemented in MATLAB, and copy number assignment

is implemented Perl.

Contact: lakshmi.muthuswamy@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

DNA copy number variations (CNVs) are associated with a wide
range of diseases including cancer where detection of copy
number alterations has led to guided-therapeutic interventions.

For example, amplification of the ERBB2 locus is used to iden-
tify patients for trastuzumab treatment. Although Comparative
Genome Hybridization (CGH), microarrays have an intrinsic

kilobase (kb) resolution for CNV detection, the advent of high-
throughput next-generation sequencing (NGS) technologies
offers us the potential to probe genomic structural variation at

base-pair level. However, with the increase in signal resolution
comes a substantially increased noise signature and the problem
of how to remove false positives. Recent efforts by various
groups (Abyzov et al., 2011; Ivakhno et al., 2010; Kim et al.,

2010; Klambauer et al., 2012; Magi et al., 2011; Medvedev et al.,
2009; Miller et al., 2011; Waszak et al., 2010; Xie and Tammi,
2009; Yoon et al., 2009) have attempted to mitigate the noise by

carrying out a smoothing (binning) of the sequencing read depth
on scales of tens to hundreds of base pairs and examining this
smoothed read depth. The smoothing process is performed on a

set, arbitrary, scale, which can smooth-out physically interesting
features of a signal. This is of significant concern for cancer
genomes, which are known to have unstable genomes that con-
stantly evolve. Smoothing methods also assume that the noise

signature of the signal is overwhelmingly concentrated on a
single base-pair genomic scale (high frequency) and ignores the
possibility of strong long-range (low-frequency), systemic, corre-

lated noise that may increase the false-positive rate of any detec-
tion algorithm. Another recent effort, Varbin (Baslan et al.,
2012) uses a variable binning approach to take into account an

uneven distribution of mappable reads. Although this method is
suitable for low or sparse coverage as illustrated in single cell
sequencing (Navin et al., 2011), it does not fully harness the

available base–pair-scale genomic resolution.
Assignment of digitized copy number to genomic segments in

tumors is further complicated in cancer genomes due to a
number of sample-specific confounding factors. For example,

primary tumor tissues may contain low tumor cellularity due
to an admixture of diploid/non-tumor cell fraction in patient
samples, including pancreatic cancer where tumor cellularity

can vary from 5 to 80%, thus making the detection of cancer
driver mutations difficult (Biankin et al., 2012). In addition to
primary tumors, patient-derived samples grown in mouse
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xenograft (PDX) models are being increasingly used in pre-clin-

ical settings to understand tumor biology and therapy response

(Huynh et al., 2011; Morton and Houghton, 2007). Assignment

of digitized copy number to CNVs in these models becomes in-

creasingly difficult due to mouse contamination of the tumor

samples that introduces noise in the sequencing coverage as

well as allele frequencies for SNVs (both of which are integral

to CNV calling methods). Although algorithms such as qpure

(Song et al., 2012), genoCN (Sun et al., 2009), ASCAT (Van Loo

et al., 2010) and ABSOLUTE (Carter et al., 2012) model for

stromal contamination and ploidy estimation on SNP array

data, they do not function for genome sequencing data. Also

these methods cannot correct for the additional effects of xeno-

graft mouse contamination.

To fill this need, we have developed WaveCNV, a tool that

uses DNA sequencing data to model for complex cancer

genomes. The algorithm estimates ploidy, tumor cellularity in

primary tumors, mouse content in xenograft models and assigns

digitized copy numbers and alleles to indicate which parental

chromosome pair was affected by each copy number event.

Also to overcome limitations associated with binning-based

approaches, we use the well-established theory of wavelets to

take full advantage of the genomic resolution available in

sequencing data. Figure 1 illustrates the overall flowchart of

data generation and copy number modeling.

2 METHODS

2.1 Segmentation algorithm

Wavelet theory is used both for denoising of the depth of coverage in

NGS data (which is inherently multiscale and carries non-uniform cover-

age signal) and to identify rapid transitions corresponding to CNV break-

points. The wavelet transform (Mallat, 2008) breaks a given signal into

different frequency components with a resolution matched to its intrinsic

scale and can thus claim fundamental advantages over traditional Fourier

methods in detecting sharp localized discontinuities as observed in copy

number alterations. This specific property of wavelet transform is crucial

in analyzing signals, specifically NGS coverage data, where size of copy

number alterations can vary from base pair to length of a chromosomal

arm. We give a brief description here, while the mathematical details are

provided in Supplementary Materials S.1 and S.2.

We first select the wavelet basis function by using the inherent nature

of copy number alterations that a genomic region with a read depth ƒ is

likely to make digitized step transitions and hence choose the simplest of

all wavelets, a step function or the Haar wavelet. Given our choice of the

Haar basis, we use a translation-invariant discrete wavelet transformation

on the normalized read depth (Coifman and Donoho, 1995) to obtain

detailed signal frequency and scale information—encapsulated by the

approximation and detail coefficients. The approximation coefficients

will contain both the low-frequency component (feature sizes of the

order of a few kilobases) and a high-frequency component unique to

sequencing data (feature sizes less than a kilobase). The detail coefficients

will contain an exclusively high-frequency component, which is more

likely to have significant noise but also possibly important small-scale

insertions and deletions. We scan across scales of interest by successively

iterating the decomposition of signal ƒ, with successive approximation

coefficients being decomposed in turn. This results in the signal being

broken down into many lower genomic-resolution components starting

from a small scale.

We then use de-noised approximation coefficients to define boundaries

where there is a transition from one copy number state to another.

Detection of breakpoints is achieved by asking when the coefficients of

the maximal scale intersect those of the finest scale as given in Equation

(1). For reasons of economy and because the CNV distribution is largely

unknown, we examine the intersections between the approximation coef-

ficients at entropy scale (aL*) and the partial autocorrelation scale (aP)

(Supplementary Material S.2).

a0Lp � a0L� � sgn
1

2Lp

� �
ap �

1

2L�

� �
aL�

� �
ð1Þ

The main point in the approach is that by examining the zero crossings

of this special function in Equation (1), we should have an extremely low

false-negative rate owing to the inherent sensitivity of the Haar wavelets

to abrupt changes in the signal at this wide range of scales. One can show

that this procedure is equivalent to searching for local maxima of the

squared modulus of the dominant wavelet coefficients in the signal

(Legarreta et al., 2005). Figure 2 illustrates clearly that the major features

of the signal discontinuities are captured by the wavelet transformed

and de-noised signal, but with subtle differences in that the detail coeffi-

cients are extremely sensitive to steep-gradient features and miss gradual

read depth changes that are instead captured by the approximation

coefficients.

2.2 Allele-specific copy number estimation

After the breakpoints are detected using our segmentation algorithm, we

assign digital copy numbers to each segment. Our basic method is similar

to copy number models applied to microarray data (Sun et al., 2009; Van

Loo et al., 2010; Wang et al., 2007) with additional layers of complexity

added to the model due to tumor-specific confounding factors

(Supplementary Materials S.5–S.11 and methods below). We use sequen-

cing coverage modeled as a Poisson distribution and minor allele

frequency (MAF) modeled as a binomial distribution to assign digitized

copy numbers to each CNV event. We also assign alleles to each copy

number event describing the parental chromosome ratio following each

duplication or loss. For example, a three-copy region might have an allele

of 1:2 (one copy from the first parental chromosome and two copies from

the other parental chromosome), whereas allele 0:3 would also be possible

(three copies of one parental chromosome and complete loss of the

Fig. 1. Flow chart showing the analysis procedure
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other). Alleles are assigned based on MAF distribution within the CNV

event, which will be specific to chromosomal balance (e.g. a 1:2 allele

would produce MAF distribution peaks at 0.33 for SNVs on one

chromosome and 0.66 for SNVs on the other chromosome). Allelic

assignment is possible in cancer because somatic duplication/loss events

are recent, so linkage among SNVs is not expected to break down as it

does in germline CNVs. The allele assignments in WaveCNV can be used

to associate CNVs with SNVs/indels that appear to be preferentially

gained or lost.

In addition to modeling for basic coverage and MAF, we also model

for aneuploidy, normal/diploid contamination of primary tumor samples,

mouse contamination of human tumors grown in xenograft and we per-

form auto-correction of systematic sequencing biases using matched

normal/control samples. For validation purposes, we used WaveCNV

to identify CNV events in human pancreatic cancer samples.

Sequencing data were aligned using Novoalign (Novovcraft, Inc.) and

processed using Genome Analysis Tool Kit to identify SNVs and

minor allele frequencies (see Fig. 1 and Supplementary Material S.3 for

data generation and S.4 for data pre-processing).

2.3 Estimation of minimum detectable CNV length

Given that coverage is modeled as a Poisson distribution, the variance for

the median coverage can be approximated after adapting Raikov’s the-

orem using the equation:

V ¼ ce=n
0 ð2Þ

where ce is the expected segment median coverage and n’ is the number of

independent data points in the region (See Supplementary Material S.5).

Variance is thus a function of both coverage and segment length, and a

relationship can be derived to identify the minimum segment length

required to identify a copy number event to a specified confidence thresh-

old (See Supplementary Materials S.5 and S.7).

The length of all segments must then satisfy the following relationship

to be detectable:

n04
ci�

2

d� 0:5ð Þ
2

ð3Þ

where ci is the average expected median coverage on the region of interest,

d is the difference in coverage from the neighboring segment and � is a

selected threshold factor (3.890592 for 0.01%). This relationship specifies

that events become detectable with either deeper coverage or longer

segments, and low copy events are more easily distinguished than high

copy events. Such information is invaluable because it allows us to de-

termine the minimum sequencing coverage required before even begin-

ning an experiment. This can be especially useful when sequencing tumor

samples with diploid/normal fraction contamination that dilutes apparent

separation between copy number levels. For example, the smallest events

that could be identified in a primary tumor sample sequenced with 101

base pair reads and having a cellularity of 0.20 would be �7kb in length

at 30� coverage and �2kb at 100� coverage. We also use this relation-

ship to simplify our calling algorithm and improve run times by merging

short segments before calculating fits to each copy number model.

2.4 Estimation of mouse contamination in xenograft

models

Human derived tumors are commonly grown as xenografts in mice to

facilitate continued study of the tumor’s biology or increase total tumor

content of low cellularity tumor types. When using these xenografted

samples with NGS, mouse DNA contamination of the human-derived

tumors can introduce confounding factors into both coverage and MAF,

which can falsely alter the apparent copy number. The overall effect of

this contamination becomes more extreme as the mouse content of the

sample increases. One approach to removing mouse contamination used

by tools like Xenome (Conway et al., 2012) is to try and directly identify

non-human sequencing reads and remove them upstream of any data

processing. However, there are many conserved regions of high sequence

identity between human and mouse for which sequencing reads cannot be

separated in this way. Unfortunately these regions of conservation are

primarily concentrated in gene coding regions (which are of main interest

in cancer analysis). We thus take another approach that could be used in

complement with tools like Xenome. We adjust expected coverage higher

and shift expected MAF values based on the estimated amount of mouse

contamination in the region (The mouse is assumed to come from an

inbred line, so it will be diploid and homozygous for most mouse-specific

SNVs).

Figure 3A and B show a two copy 30-megabase region observed in

chromosome 1 of a human pancreatic cancer cell line that is expected to

be free of mouse DNA contamination. The observed MAF distribution

for the cell line (Fig. 3B red line) is centered around the MAF value of 0.5

and closely matches the calculated expected MAF distribution (Fig. 3B

blue line). For the exact same two copy 30-megabase region from the

same human tumor sample grown in xenograft, the observed distribution

Fig. 2. Detection of signal discontinuities using wavelet transformed and de-noised signal over a 16kb region. Top panel shows the raw read depth (gray)

and the denoised signal (red). Bottom panel illustrates copy number break points where the coefficient of the maximal scale intersects those of the finest

scale. The y-axis is the squared approximation wavelet coefficient, and x-axis is the genomic position in megabases
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of the MAF (Fig. 3D red line) is centered at 0.47, below the expected

value of 0.5 (Fig. 3D blue line). There is also an observable band of data

introduced by the mouse contamination around 0.16 (Fig. 3C and D blue

arrows). Owing to the multi-modality of the MAF distribution, the ob-

servation deviates significantly from the expected distribution curve.

In our CNV calling algorithm, we adjust the expected MAF frequen-

cies to take confounding factors caused by the aligning mouse reads into

account by adding an independent distribution peak for mouse-derived

SNVs as well as modeling for the degree that MAF peaks will be shifted

by mouse reads (mouse-derived SNVs will be two copy homozygous for

inbred lines). Our improved expected distribution seen in Figure 3D

(green line), clearly matches the observed distribution (red line) better

than the standard expect (blue line). We also alter expected coverage

for the segments by estimating the quantity of mouse reads that will

align (these values are fixed into WaveCNV, but can also be supplied

as a BAM file if mouse was sequenced independently).

Based on kernel density estimation of mouse-expected coverage, the

average mouse contamination of this particular xenograft was 21% of the

total DNA content of the sample. We validated the estimated mouse

contamination using qPCR. Two target loci were chosen such that

one of them maps uniquely to human and another to the mouse

genome. The values from TaqMan� qPCR analysis were used to calcu-

late the relative absolute quantity between human and mouse probes,

which demonstrated a 27% mouse contamination in the pancreatic xeno-

graft compared with the tumor cell line derived from the same tumor.

Thus these two alternate approaches ascertain the estimation of mouse

contamination using our model within an acceptable margin of error.

2.5 Estimation of cellularity in primary tumors

Normal/diploid cell contamination of primary tumors complicates CNV

calling by diluting signal from the tumor cells and reducing the amount of

observed coverage separating copy number levels as well as altering the

expected minor allele frequencies at each copy number level. Corrections

for shift in coverage andMAF can be obtained if you know the cellularity

of a sample. Previously qpure (Song et al., 2012) has attempted to esti-

mate cellularity using a relationship for the shift in MAF in the single

outermost peak of loss of heterozygosity (LOH) events. Notably, how-

ever, they found that the relationship they use does not hold linear for

values520% cellularity. We followed an approach similar to theirs by

using the shift in MAF for LOH events to estimate cellularity; however,

we make use of LOH events at multiple copy number levels and derived a

relationship that does hold linear even at low cellularity:

1

MLOH
¼

T

1� T

� �
Nþ 2 ð4Þ

where T is the tumor cellularity, N is the copy number of the region, and

MLOH is the left-most central MAF peak for the region at copy number

N. The slope of the relationship is therefore a function of the cellularity T.

Also because the y intercept of the relationship is always fixed at 2

(reciprocal of MAF 0.5), we can fit N to the proper copy number for

complex aneuploidy events.

Supplementary Figure S4, panel A clearly shows the outer most MAF

peaks for copy numbers 1–3 of a patient-derived pancreatic cancer pri-

mary tumor sample. As shown in Supplementary Figure S4, panel B,

when the MAF values from LOH peaks are used with Equation (4),

the slope allows us to derive the cellularity of the sample. The resulting

slope 0.611 (R2
¼ 0.99876) corresponds to a cellularity of 0.38 for this

tumor sample.

We further validated our model using a dilution series of pancreatic

tumor cells derived from a primary tumor cell line mixed with increasing

quantities of diploid cells derived from matched normal. Table 1 shows a

convincing validation of tumor content estimation for these samples ran-

ging from 5 to 100% cellularity. Estimates match well with expected

values even for low cellularities, demonstrating the effectiveness of our

method.

Identifying genomic mutational landscape has been difficult in tumor

genomes where tumor content is520%. However, using sequencing data,

it may now be possible to use low cellularity tumors to detect mutational

landscape if coverage is sufficient [overall coverage determines the min-

imum length of detectable copy number events according to Equation (3)

earlier mentioned in the text].

2.6 Estimation of ploidy

One of the most difficult aspects of assigning digital copy number values

to a sample is in determining what the expected coverage or copy neutral

coverage would be. Many algorithms assume that the majority of a

sample is diploid and any gains and losses are determined based on

normalizing the coverage of each chromosome using this assumption.

Fig. 3. MAF distribution of SNVs in a 30Mb region of chr1. (A) MAF

density in a pancreatic cancer cell line; (B) observed (red) and normal

fitted expect (blue) distribution curves of MAF for pancreatic cancer cell

line; (C) MAF density in a pancreatic xenograft model; (D) observed

(red), normal fitted expect (blue) and expect with mouse contamination

(green) for pancreatic xenograft model

Table 1. Experimental validation of cellularity estimates

Mixed tumor fraction WaveCNV estimate

0.05 0.043

0.10 0.088

0.15 0.155

0.20 0.236

0.40 0.403

0.60 0.602

1.00 1.00

Note: The table shows WaveCNV-derived cellularity estimates for

a dilution series of diploid/normal contamination mixed into a

pancreatic cancer cell line model.
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This becomes problematic especially for tumor samples where the major-

ity of the genome is often not expected to be diploid.

We have developed a procedure for identifying the base coverage cor-

responding to a one-copy shift that can be used to determine the ploidy of

a given sample. Because multiples of the optimal value for the base cover-

age should correlate with the observed coverage for all segments of the

genome, we perform an iterative search for a value that generates a

genome-wide maximum coverage likelihood while simultaneously gener-

ating the best fit to an MAF as measured by residual sum of squares (rss).

This conveniently happens at the point of maximum separation between

normalized curves of coverage likelihood and rss. The overall procedure

for selecting a base coverage is further detailed in the Supplementary

Material S.10.

We validated our procedure using a triploid pancreatic tumor sample

and its diploid matched control/normal. The expected coverage median

for the diploid matched normal genome was determined to be 38 using

Gaussian kernel density estimation (Fig. 4A). A search through the base

coverage candidate space (Fig. 4B) using normalized coverage likelihood

(red line) and normalized rss fit for MAF (blue line) reveals that max-

imum separation (yellow line) occurs at coverage 19.73. Given that the

kernel-derived genome median coverage is 38, a base coverage of 19.73

would give a correct ploidy estimate of two for the genome. When the

same procedure is applied to the triploid tumor sample (Fig. 4C and D)

the base coverage is calculated to be 9.84 and the expected median cover-

age is 28, giving a correct ploidy estimate of three for the sample.

2.7 Matched normal corrects for coverage bias and

germline events

Because WaveCNV is a somatic CNV caller, as CNVs are assigned to the

tumor sample it can simultaneously assign copy numbers to the same

segment in the diploid matched control (sequenced together with the

tumor). This allows WaveCNV to determine if given losses, gains and

LOH events are in fact somatic or germline events. Furthermore, the

matched normal also allows WaveCNV to correct for anomalies present

in the reference sequence including systematic variance in coverage, high

repeat regions, unsequencable regions with consistently missing coverage

and so forth. Supplementary Figure S5 clearly demonstrates the decrease

in variance for genomic coverage when a matched control based correc-

tion is applied (blue line) as opposed to the standard coverage distribu-

tion (red line). Final somatic calls are highlighted in the output report to

distinguish them from other copy number calls, thus allowing researchers

to immediately focus on the events most likely to be important to tumor

progression. Further details for matched normal/control-based correction

are found in the Supplementary Materials S.11.

3 RESULTS

We identified 764 somatic copy number aberrations in pancreatic

cancer genome sequencing data using WaveCNV. The size of

CNV events varied from 284bp to 33Mb. Supplementary

Table S4 lists these events along with their verification status

using alternate platforms, and Supplementary Figure S7 illus-

trates the size distribution of those events.

3.1 Ascertainment of somatic CNVs using microarray and

qPCR technologies

CNVs identified using WaveCNV were verified using three alter-

nate technologies: Nimblegen, 2.1 million CGH tiling array,

Illumina 1 million Omni-quad SNP array and verification of

80 CNV loci with copy number varying from 0 to 30 using

qPCR. We find a high correlation between CN estimated from

qPCR method and WaveCNV as shown in Figure 5A. We fit

linear regression and found that regression coefficient (0.94) with

P52e-16. With the regression coefficient close to 1, it confirms

that our CN model used in WaveCNV algorithm is able to pre-

dict accurately a wide range of copy numbers. We also compared

CNVs from the whole genome with two different array-based

platforms, Illumina Omni 1M quad and Nimblegen 2.1M

array CGH. Invariably, most of the array platforms have

lower dynamic range compared with sequencing that results in

approximate digitized CN. Hence we compared CN from

sequencing to the median intensity signal of the probes covering

the region from array platforms as shown in Figure 5B and C.

We find a high concordance between array platforms and

WaveCNV. The weighted Pearson correlation coefficients are

calculated to be 0.86 for Illumina array and 0.97 for

Nimblegen array with weights proportional to the length of the

segment.

Fig. 4. Modeling for aneuploidy. (A) The expected segment median

coverage for a diploid genome is estimated using kernel density estima-

tion. This value then serves to define a range for estimating the sample

base coverage (coverage of copy number 1). (B) The normalized likeli-

hood of the observed coverage (red line) as well as the normalized

residual sum of squares value (rss) for all MAF distribution fits (blue

line) are calculated for each candidate base coverage (assuming ploidy

range 1–4). The base coverage that produces the maximum separation

between likelihood and rss (yellow line) is then selected. (C and D) show

the expected segment median coverage and the base coverage selected for

a triploid genome
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3.2 Algorithm performance comparison

We additionally compared our results to the sequencing-based

CNV calling algorithms CNVnator (Abyzov et al., 2011) and

OncoSNP-SEQ (Yau, 2013). We used base pair level congruency

between algorithm calls to compare matches. We define congru-

ency to be the average of sensitivity (the fraction of a reference

feature predicted) and specificity (the fraction of a prediction

overlapping a reference feature). In all cases the reference is the

algorithm we are comparing with.
Table 2 shows the comparative statistics between the three

algorithms. Comparing copy number events observed in

WaveCNV with CNVnator, we observed an overall congruency

of 93% (95% in gains and 92% in losses). When comparing

WaveCNV to OncoSNP-SEQ (a cancer-specific CNV caller),

we see an overall congruency of 80% (87% for amplifications

and 80% for deletions). The lower match for OncoSNP-SEQ is

primarily due to our sample coverage being lower than that rec-

ommended for accurate OncoSNP-SEQ performance (our

sample was sequenced to 30�, whereas OncoSNP-SEQ requires

a minimum of 60�).

Our concordance with CNVnator is one of the highest

reported so far between any two programs for sequencing data

thereby supporting the validity of our algorithm. There are key

additional features that are unique to our algorithm, which are

critical for cancer genomes. WaveCNV successfully combines the

read depth distribution, MAF and reference-based normalization

of tumor with matched normal to estimate ploidy of the genome

and corrects for mouse contamination with the additional bene-

fits of copy number allele assignments and LOH detection.

We have a well-defined mechanism to control for detectable

event sizes at different levels of sequencing coverage and tumor

sample cellularity. Also although WaveCNV can assign copy

numbers to any segment within the genome, the primary focus

of cancer research is on the somatic changes and somatic CNVs

are identified in our output by integrating matched normal/

controls into the copy number analysis.

4 DISCUSSION

We have developed a computational algorithm to detect CNV

boundaries from whole-genome sequencing data and assigned

digitized copy number by modeling for sample-specific con-

founding factor such as aneuploidy, normal/diploid contamin-

ation of primary tumors and mouse contamination in xenograft

models. The segmentation algorithm based on wavelet transform

provides a unique opportunity to probe the genome in any

Fig. 5. Validation of copy number calls using three methods.

(A) Verification of 80 CNV loci by qPCR on a pancreatic cancer

genome. Copy numbers from qPCR were estimated based on threshold

cycle (Ct) values. The Pearson correlation coefficient is 0.94. (B)

Verification of 473 somatic CNVs on the whole-genome using Illumina

Human Omni 1Million microarray. Shown here is the concordance be-

tween intensity ratios in microarray to WaveCNV CN. The Pearson cor-

relation coefficient is 0.86. (C) Verification of 468 somatic CNVs on the

whole genome using Nimblegen 2.1 Million aCGH microarray.

Shown here is the concordance between aCGH intensities ratio

in microarray to WaveCNV CN. The Pearson correlation coefficient

is 0.97

Table 2. WaveCNV comparison to other algorithms

Algorithm Events Gains Losses Total basepair

gains

Total basepair

losses

Congruency

gains

Congruency

losses

Congruency

all

WaveCNV 764 359 405 312922 439 567442 194 – – –

CNVnator 3658 829 2829 319703 400 622106 100 0.95 0.92 0.93

OncoSNP 1423 567 856 260783 488 912819 293 0.87 0.80 0.80

Note: This table shows the base pair level congruency in copy number alterations called by WaveCNV compared with CNVnator and OncoSNP-SEQ.
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spatial genomic scale. Although the first part of the algorithm
identifies all discontinuities, the second part of WaveCNV pro-
vides a statistical framework to assign CN and merge neighbor-
ing events carrying the same copy number. This corrects for false

shearing of copy number events that may arise due to poor qual-
ity of sequencing data.
A key component of WaveCNV is the matched–normal-based

copy number correction. Being aware of the diploid control
ensures that any systemic artifacts that may appear in both
tumor and normal genomes, including platform-specific biases,

unsequenceable regions and so forth, are effectively removed or
corrected for. This resulted in a high concordance between
somatic CN calls from our algorithm in sequencing data to

both microarray data and qPCR.
Xenograft models for many types of primary tumors have

increasingly become useful tools to understand cancer biology
and to test therapeutic targets. Our model estimates mouse

contamination and the reported allele and copy number reflects
the correction for mouse contamination. The mouse contamin-
ation estimate matches well with our mouse-specific qPCR data.

On the same note, most directly sequenced primary tumor
samples contain stromal contamination, and our algorithm can
quantify and model for the presence of contaminating diploid

cells in that sequencing data.

5 CONCLUSION

Our segmentation algorithm is unique from its methodology per-

spective, and can potentially improve the boundary assignments
on the smaller CNV events found via whole-genome sequencing.
In addition, the assignment of specific alleles to copy number
losses/gains can give researchers the ability to explore relation-

ships between selected sequence mutations and structural vari-
ation. For example, in pancreatic cancer a KRAS activating
point mutation is often coupled with duplication events, thus

amplifying the effect of this oncogene. Being able to identify
similar correlations based on reports from our algorithm could
prove useful in prioritizing-specific genes for further study.
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