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Genome-wide association studies (GWAS) have identified hundreds of cardiometabolic
disease (CMD) risk loci. However, they contribute little to genetic variance, and most
downstream gene-regulatory mechanisms are unknown. We genotyped and RNA-
sequenced vascular and metabolic tissues from 600 coronary artery disease patients in
the Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study
(STARNET). Gene expression traits associated with CMD risk single-nucleotide
polymorphism (SNPs) identified by GWAS were more extensively found in STARNET than in
tissue- and disease-unspecific gene-tissue expression studies, indicating sharing of
downstream cis-/trans-gene regulation across tissues and CMDs. In contrast, the
regulatory effects of other GWAS risk SNPs were tissue-specific; abdominal fat emerged as
an important gene-regulatory site for blood lipids, such as for the low-density lipoprotein
cholesterol and coronary artery disease risk gene PCSK9. STARNET provides insights into
gene-regulatory mechanisms for CMD risk loci, facilitating their translation into
opportunities for diagnosis, therapy, and prevention.

I
n 2012, cardiovascular disease accounted
for 17.5 million deaths, nearly one-third of all
deaths worldwide, and >80% (14.1 million)
were from coronary artery disease (CAD) and
stroke. CAD is preceded by cardiometabolic

diseases (CMDs) such as hypertension, impaired
lipid and glucose metabolism, and systemic in-
flammation (1, 2). Genome-wide association studies
(GWAS) have identified hundreds of DNA var-
iants associated with risk for CAD (3), hyperten-
sion (4), blood lipid levels (5), markers of plasma
glucosemetabolism (6–10), type 2 diabetes (6, 11),
bodymass index (12), rheumatoid arthritis (13),
systemic lupus erythematosus (SLE) (14), ulcer-
ative colitis (15), and Crohn’s disease (16). How-
ever, identifying susceptibility genes responsible
for these loci has proven difficult.
GWAS loci typically span large, noncoding, in-

tergenic regions with numerous single-nucleotide
polymorphisms (SNPs) in strong linkage dis-
equilibrium. These regions are enriched in cis-
regulatory elements (17) and expressionquantitative
trait loci (eQTLs) (18–20), suggesting that gene
regulation is the principal mechanism by which

risk loci affect complex disease etiology. How-
ever, it is largely unknown whether this gene-
regulatory effect includes one or several genes
acting in one or multiple tissues and whether
risk loci for different diseases share cis- and trans-
gene regulation. A better understanding of gene
regulation may also shed light on why known
GWAS risk loci explain only ~10% of expected
heritable variance in CMD risk (21). Possibly,
multiple risk loci, acting through common cis-
and trans-genes, contribute synergistically to
heritability (22, 23).
In the Stockholm-Tartu Atherosclerosis Reverse

Networks Engineering Task study (STARNET)
(fig. S1), we recruited 600 well-characterized
(table S1 and fig. S2) CAD patients; genotyped
DNA (6,245,505 DNA variant calls with minor
allele frequency >5%) (fig. S3); and sequenced
RNA isolated from blood, atherosclerotic-lesion-
free internal mammary artery (MAM), athero-
sclerotic aortic root (AOR), subcutaneous fat (SF),
visceral abdominal fat (VAF), skeletal muscle
(SKLM), and liver (LIV) (15 to 30 million reads
per sample) (figs. S4 to S11 and table S2).

In total, ~8 million cis-eQTLs were identified,
and nearly half were unique SNP-gene pairs (figs.
S12 to S26 and tables S3 to S7). The STARNET
cis-eQTLs were enriched in genetic associations
established by GWAS for CAD, CMDs, and Al-
zheimer’s disease (AD) (3–16, 24) (figs. S27 to
S33) and were further enriched after epigenetic
filtering (figs. S34 to S39). Of 3326 genome-wide
significant-risk SNPs identified by GWAS to date
(25), 2,047 (61%) had a matching cis-QTL in
STARNET (Fig. 1A). Of the 54 lead risk SNPs ver-
ified in meta-analyses of CAD GWAS (3), 38 cis-
eQTLs with a regulatory trait concordance score
(RTC) >0.9 and at least one candidate gene were
identified in STARNET (table S8 and fig. S27).
Compared with large data sets of cis-eQTL iso-
lated only from blood, cis-eQTLs across all tis-
sues in STARNET matched >10-fold more CAD
and CMD-related GWAS risk SNPs (Fig. 1B).
STARNET cis-eQTLs isolated from CAD-affected
tissues also matched several-fold more CAD and
CMD-related GWAS risk SNPs than cis-eQTLs
from corresponding tissues isolated from pre-
dominantly healthy individuals in the Genotype
Tissue Expression (GTEx) study (18) (Fig. 1C). Thus,
not all gene-regulatory effects of disease-risk SNPs
are identifiable in blood or healthy tissues. This
notion was further underscored by comparing
the statistical significances of cis-eQTLs for GWAS
risk SNPs in STARNET with corresponding asso-
ciations in GTEx (Fig. 1D). In STARNET, gene
fusions (table S9) and CAD-related loss of func-
tion mutations (table S10) were also detected.
The cis effects of disease-associated risk loci

identified by GWAS are central for understand-
ing downstream molecular mechanisms of dis-
ease. However, these cis-genes likely also affect
downstream trans-genes. To identify possible
trans effects, we ran a targeted analysis to call
both cis- and trans-genes for lead risk SNPs iden-
tified by GWAS. After assigning cis-eQTLs for
562 risk SNPs for CAD, CMDs, and AD (3–16, 24),
we used a causal inference test (26) to conserva-
tively call causal correlations between the cis-genes
and trans-genes by assessing the probability that
an interaction was causal [SNP→cis-gene→trans-
gene; false discovery rate (FDR) < 1%] and not
reactive (SNP→trans-gene→cis-gene; P > 0.05)
(26) (table S11). We found extensive sharing of
cis- and trans-gene regulation by GWAS risk loci
across tissues and CMDs. In CAD, 28 risk loci
with at least one causal interaction (FDR < 1%,
P > 0.05) had a total of 51 cis-genes and 1040
trans-genes. Of these, 26 risk loci, 37 cis-genes
[including 27 key drivers (27)], and 994 trans-
genes were connected in a main CAD regulatory
gene network acting across all seven tissues
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Fig. 1. QTLs and disease-associated risk SNPs identified by GWAS. (A) Venn
diagram showing 2047 of 3326 disease-associated risk SNPs from the Na-
tional Human Genome Research Institute GWAS catalog overlapping with at
least one form of STARNETe/psi/aseQTLs. (B) Odds ratios that STARNETeQTLs
coincide with CAD-associated risk SNPs (set 1, CARDIoGRAM-C4D, n = 53; set 2,
CARDIoGRAM extended, n = 150) (3), blood lipids (set 3, n = 35) (5), and
metabolic traits (set 4, n = 132) (6, 8, 10, 12) versus blood eQTLs from

RegulomeDB and HapMap. The y axis shows odds ratios. Error bars, 95% con-
fidence intervals. (C) Stacked bar plots comparing tissue-specific eQTLs
from STARNETand GTEx (18) coinciding with disease-associated risk SNPs in
the same sets 1 to 4 as in (B). (D to I). Q-Q plots showing associations of tissue-
specific STARNET (blue) and GTEx (18) (red) cis-eQTLs of disease-associated
risk SNPs identified by GWAS for CAD (3) (D), blood lipids (5) (E), waist-hip
ratio (12) (F), fasting glucose (6) (G), AD (24) (H), and SLE (14) (I).

Fig. 2. A cis/trans-gene–regulatory network of CAD risk
SNPs.Amain gene-regulatory network of cis-and trans-genes
associated with 21 of 46 index SNPs for risk loci identified for
CAD bymeta-analysis in the CARDIoGRAMGWAS of CAD (3),
inferred using a causal inference test (26).
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(Fig. 2). The trans-genes in this network were
enriched with genes previously associated with
CAD and atherosclerosis (Fisher’s test, 1.54-fold;
P = 8 × 10–10 ) (table S11). Sharing of cis/trans-
genes downstream of complex disease risk loci
also emerged for other CMDs and AD (3–16, 24)
(fig. S40). In fact, we identified 33 cis-genes reg-
ulated by risk SNPs across all CMDs, including
CADandAD, acting as key drivers in a pan-disease
cis/trans-gene regulatory network (Fig. 3A).
Among CMDs, cis/trans-genes of GWAS risk

SNPs for blood lipid levels (5) emerged as cen-
tral (Fig. 3B) where tissue-specific downstream
effects were, besides LIV (46 cis- and 150 trans-
genes), observed in the fat tissues (SF, 45 cis- and
372 trans-genes; VAF, 38 cis- and 465 trans-
genes) (fig. S41 and table S11). Visceral abdominal
fat examples included ABCA8/ABCA5 (rs4148008)
associated with 36 downstream trans-genes in
VAF and HDL (high-density lipoprotein); EVI5
(rs7515577) associated with 32 VAF trans-genes
and total cholesterol; and STARD3 (rs11869286)

associated with 7 VAF trans-genes and HDL.
In addition, the cis-gene TMEM258 (rs174546)
with 22 trans-genes in abdominal fat surfaced
as a parallel/alternative regulatory site of plasma
low-density lipoprotein (LDL) to the proposed
FADS-1,2,3 in LIV (5) (fig. S41). Other risk SNPs
with VAF-specific cis-genes had few or even no
trans-genes (fig. S41). For example, two risk
SNPs—rs11206510 for CAD and rs12046679 for
LDL cholesterol level (3, 5)—regulate PCSK9 in
VAF, not in LIV (Fig. 4, A and B). The VAF spec-
ificity of these eQTLs PCSK9 was confirmed in
an independent gene expression data set from
morbidly obese patients (28) (Fig. 4C and fig.
S30), suggesting that PCSK9 is secreted from
VAF into the portal vein to affect hepatic LDL
receptor degradation, LDL plasma levels, and
risk for CAD (29). Interestingly, and as previously
suggested (30), we observed that STARNET pa-
tients in the upper, compared to the lower, 5th
to 20th percentiles of waist-hip ratio (i.e., pa-
tients with and without “male fat”) had higher

levels of circulating PCSK9 (Fig. 4D) and LDL/
HDL ratio (Fig. 4E).
STARNET provides new insights into tissue-

specific gene-regulatory effects of disease-associated
risk SNPs identified by GWAS, as exemplified
by abdominal fat for blood lipids, and will be a
complementary resource for exploring GWAS
findingsmoving forward. Furthermore, STARNET
also revealed unexpected sharing of cis- and
trans-genes downstream of risk loci for CMDs
across both tissues and diseases. We anticipate
that the identified cis/trans-gene regulatory net-
works will help elucidate the complex down-
stream effects of risk loci for common complex
diseases, including possible epistatic effects
that could shed light on the missing heritabil-
ity of CMD risk. Given the detailed phenotypic
data on STARNET patients, we can begin to
identify how genetic variability interacts with
environmental perturbations across tissues to
cause pathophysiological alterations and com-
plex diseases.
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Fig. 3. Cis- and trans-gene regulation across CMDs and Alzheimer’s dis-
ease. (A) A pan-disease risk SNP cis/trans-gene regulatory network. Thirty-
six top key disease drivers, including 33 cis-genes for risk SNPs identified for
CMDs including CAD and AD by GWAS (3–16, 24), were identified as having
>100 downstream genes in any disease-specific network or belonging to the
top five key drivers in themain regulatory gene network for each disease (table
S11). Edge thickness reflects how frequent an edge is part of the shortest path
between all pairs of network nodes. Node size reflects the number of downstream
nodes in the network. RA, rheumatoid arthritis; UC, ulcerative colitis. (B) Cis- and

trans-gene regulationacrossdisease-tissuepairs.Nodes representuniquedisease-
tissue pairs. Edges occur when a cis-gene in one node has downstream trans-
genes present also in another node. Edge thickness defined as in (A). Node size
reflects its centrality in the network: The position of the nodes in the network (i.e.,
layout)was derived fromanedge-weighted spring layout algorithm.The “weight” is
defined as the numberof trans-genes that have a connection from the upstream
node’s cis-genes, normalized by the total number of trans-genes between two
connecting nodes,with the result that highly connected nodes are positioned in
the center of the network.
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Fig. 4. PCSK9 regulation in VAF, not LIV, increases
risk for elevated LDL/HDL ratio. (A) PCSK9 was ex-
pressed in STARNET LIV and VAF but was only associ-
ated with the CAD risk SNP rs11206510 in VAF (FDR <
0.001). Box plot of allelic PCSK9 expression of the CAD
risk SNP rs11206510, showing dosage effect of the T
allele (P = 3.91 × 10–15; FDR = 4 × 10–4). (B) Regional
plot of thePCSK9 locus. rs2479394, linked to plasma LDL
levels by GWAS (5), acts independently of rs11206510
as the lead eQTL of PCSK9 expression in VAF. rs2479394 was not an eQTL of PCSK9 in STARNET LIV. (C) Box plots of allelic PCSK9 expression in VAF of
rs11206510 and rs2479394 in a gene-tissue expression study of morbidly obese patients (fig. S29) (28). (D and E) Box plots of PCSK9 levels (D) and ratios
of LDL/HDL (E) in plasma isolated from the STARNETpatients within the upper and lower 5th to 20th percentiles of waist-hip ratio (WHR) (PCSK9: 5th, P =
8.0 × 10–11; 10th, P = 1.9 × 10–11; 15th, P = 5.9 × 10–5; 20th, P = 0.004. LDL/HDL ratio: 5th, P = 0,007; 10th, P = 0.001; 15th, P = 0.0005; 20th, P = 0.0009.
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